Skip to main content

✨ Enterprise Features

Features here are behind a commercial license in our /enterprise folder. See Code

Features:

  • Content Moderation with LlamaGuard
  • Content Moderation with Google Text Moderations
  • Tracking Spend for Custom Tags

Content Moderation with LlamaGuard

Currently works with Sagemaker's LlamaGuard endpoint.

How to enable this in your config.yaml:

litellm_settings:
callbacks: ["llamaguard_moderations"]
llamaguard_model_name: "sagemaker/jumpstart-dft-meta-textgeneration-llama-guard-7b"

Make sure you have the relevant keys in your environment, eg.:

os.environ["AWS_ACCESS_KEY_ID"] = ""
os.environ["AWS_SECRET_ACCESS_KEY"] = ""
os.environ["AWS_REGION_NAME"] = ""

Customize LlamaGuard prompt

To modify the unsafe categories llama guard evaluates against, just create your own version of this category list

Point your proxy to it

callbacks: ["llamaguard_moderations"]
llamaguard_model_name: "sagemaker/jumpstart-dft-meta-textgeneration-llama-guard-7b"
llamaguard_unsafe_content_categories: /path/to/llamaguard_prompt.txt

Content Moderation with Google Text Moderation

Requires your GOOGLE_APPLICATION_CREDENTIALS to be set in your .env (same as VertexAI).

How to enable this in your config.yaml:

litellm_settings:
callbacks: ["google_text_moderation"]

Set custom confidence thresholds

Google Moderations checks the test against several categories. Source

Set global default confidence threshold

By default this is set to 0.8. But you can override this in your config.yaml.

litellm_settings: 
google_moderation_confidence_threshold: 0.4

Set category-specific confidence threshold

Set a category specific confidence threshold in your config.yaml. If none set, the global default will be used.

litellm_settings: 
toxic_confidence_threshold: 0.1

Here are the category specific values:

CategorySetting
"toxic"toxic_confidence_threshold: 0.1
"insult"insult_confidence_threshold: 0.1
"profanity"profanity_confidence_threshold: 0.1
"derogatory"derogatory_confidence_threshold: 0.1
"sexual"sexual_confidence_threshold: 0.1
"death_harm_and_tragedy"death_harm_and_tragedy_threshold: 0.1
"violent"violent_threshold: 0.1
"firearms_and_weapons"firearms_and_weapons_threshold: 0.1
"public_safety"public_safety_threshold: 0.1
"health"health_threshold: 0.1
"religion_and_belief"religion_and_belief_threshold: 0.1
"illicit_drugs"illicit_drugs_threshold: 0.1
"war_and_conflict"war_and_conflict_threshold: 0.1
"politics"politics_threshold: 0.1
"finance"finance_threshold: 0.1
"legal"legal_threshold: 0.1

Tracking Spend for Custom Tags

Requirements:

  • Virtual Keys & a database should be set up, see virtual keys

Usage - /chat/completions requests with request tags

Set extra_body={"metadata": { }} to metadata you want to pass

import openai
client = openai.OpenAI(
api_key="anything",
base_url="http://0.0.0.0:8000"
)

# request sent to model set on litellm proxy, `litellm --model`
response = client.chat.completions.create(
model="gpt-3.5-turbo",
messages = [
{
"role": "user",
"content": "this is a test request, write a short poem"
}
],
extra_body={
"metadata": {
"tags": ["model-anthropic-claude-v2.1", "app-ishaan-prod"]
}
}
)

print(response)

Viewing Spend per tag

/spend/tags Request Format

curl -X GET "http://0.0.0.0:4000/spend/tags" \
-H "Authorization: Bearer sk-1234"

/spend/tagsResponse Format

[
{
"individual_request_tag": "model-anthropic-claude-v2.1",
"log_count": 6,
"total_spend": 0.000672
},
{
"individual_request_tag": "app-ishaan-local",
"log_count": 4,
"total_spend": 0.000448
},
{
"individual_request_tag": "app-ishaan-prod",
"log_count": 2,
"total_spend": 0.000224
}
]